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Abstract

The dynamic stability of a cantilevered Timoshenko beam lying on an elastic foundation of Winkler type and subjected

to a tangential follower force is studied. Two models describing this phenomenon are examined and their predictions are

compared in several special cases. For the values of the beam parameters considered here, the critical compressive forces

obtained using these models differ substantially only for short beams as has already been established in other cases. Both

models are found to predict dynamic instability of cantilevers under tension unlike the Bernoulli–Euler beam theory. For a

beam of intermediate slenderness the Winkler foundation is found to reduce the critical tensile force.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic stability of a cantilever subjected to a tangential follower force within the Bernoulli–Euler
beam theory has been studied by Beck [1] who found that there exists a value of the force defined as critical
above which this beam loses stability by flutter—vibrations of increasing amplitudes.

To the best of our knowledge, the first studies in which the Timoshenko beam theory has been extended to
account for the influence of an axial force are reported by Kolousek [2] and Nemat-Nasser [3]. However, these
two authors get to different equations of motion, which in the present paper are referred to as Models I and II,
respectively. At a first glance, it seems that this difference arises from the different approaches used in
Refs. [2,3] to the derivation of the equations of motion in question. Indeed, Kolousek [2] employs the dynamic
equilibrium conditions of a beam element, whereas Nemat-Nasser [3] bases his analysis on variational
arguments. Later, however, Kounadis [4] shows that the two models can be derived by balancing the forces
and momenta acting on a small element of the beam, and Sato [5] shows that both models can also be derived
by Hamilton’s principle. For this reason, there are no theoretical arguments for giving preference to Models I
or II in the analysis of the dynamic behaviour of axially loaded Timoshenko beams.

In Refs. [3,6], it is found, within the framework of Models II and I, respectively, that a cantilever subjected
to a compressive tangential follower force can be unstable, and the critical force in both cases depends on the
slenderness of the beam and is less than the critical force of the Bernoulli–Euler beam.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Kounadis [4] was the first to point out that the critical forces of Timoshenko beams obtained by the two
models must be compared to find out whether they predict different results. In a subsequent study Katsikadelis
and Kounadis [7] find that for cantilevered beams of shear correction factor k ¼ 0:186 both models predict
very close values of the critical force for a wide range of beam slenderness ratio. Later, many authors, for
instance Lee et al. [8,9], Malekzadeh et al. [10] studied the dynamic stability of Timoshenko beams applying
one of the foregoing two models and additionally accounting for different effects—Winkler foundation,
partially tangential follower force, concentrated masses, elastically supported ends, intermediate supports, etc.
However, we do not know studies, other than [7], where a comparison of the results obtained using the two
models is reported. Let us also recall that in all foregoing studies the dynamic stability of Timoshenko beams
subjected to a compressive force is considered.

In the present paper, the case of Timoshenko beams subjected to tensile tangential follower forces is
investigated. The aim is to compare the results of the two models, to determine whether the beam equilibrium
loses stability and to study the influence of Winkler foundation on the beam behaviour.

2. Boundary-value problem

Consider a uniform elastic cantilevered beam of length L, cross-section area A, inertia moment of the cross-
section I, resting on a Winkler foundation of modulus c and subjected to an axial force N at the free end,
which is always normal to the end cross-section (a follower force1). In what follows, the force N is assumed to
be positive for tension. Within the framework of the aforementioned two models, the vibration of the beam is
governed by the following system of differential equations:
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q2W
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where the case �1 ¼ 1, �2 ¼ 0 corresponds to Model I, and the case �1 ¼ 0, �2 ¼ 1 corresponds to Model II.
Here, X is the axial coordinate along the beam axis, t is the time, W ðX ; tÞ is the transverse deflection of the
beam axis, YðX ; tÞ is the rotation angle of the cross section, E, G and k are Young’s modulus, the shear
modulus and the shear coefficient, respectively, and r is the mass density of the beam.

Eqs. (1) together with an appropriate set of boundary conditions describe entirely the dynamic behaviour of
the considered beam. The boundary conditions for a cantilevered Timoshenko beam subjected to a tangential
follower force are

W jX¼0 ¼ 0; YjX¼0 ¼ 0;
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¼ 0. (2)

Using the dimensionless variables
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introducing the parameters
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; l ¼

I

L2A
; K ¼

L2

AE
c; P ¼

1

AE
N,

where n is Poisson’s ratio, taking into account the relation G ¼ E=½2ð1þ nÞ�, and separating the variables in
the form

w ¼ uðxÞ expðiotÞ; Y ¼ yðxÞ expðiotÞ,
1For a detail discussion on the notion follower force see the exhaustive survey by Elishakoff [11].
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Eqs. (1) and conditions (2) transform to the two-point boundary value problem
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u ¼ 0, (3)

ujx¼0 ¼ 0; yjx¼0 ¼ 0;
dy
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����
x¼1

¼ 0;
du

dx
� y

� �����
x¼1

¼ 0. (4)

Actually, this constitutes a non-self-adjoint eigenvalue problem, the eigenvalue parameter being the
dimensionless frequency o.

The general solution of Eqs. (3) can be written in the form

u ¼ C1 coshða1xÞ � C2 sinhða2xÞ þ C3 sinhða1xÞ þ C4 coshða2xÞ,

y ¼ C1b1 sinhða1xÞ þ C2b2 coshða2xÞ þ C3b1 coshða1xÞ � C4b2 sinhða2xÞ, (5)

where Ci ði ¼ 1; . . . ; 4Þ are arbitrary complex numbers,
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Substituting solution (5) in the boundary conditions (4) one obtains a linear homogeneous system for the
unknown constants Ci. The condition for existence of a non-trivial solution to this system can be written as

D � ½a2b
2
2ðb1 � a1Þ � a1b

2
1ða2 þ b2Þ� cosh a1 cosh a2

þ ½a2b2
1b2 � a1b1b2ð2a2 þ b2Þ� sinh a1 sinh a2

� b1b2ða
2
1 þ a2

2 þ b2a2 � b1a1Þ ¼ 0 ð6Þ

and the solution is

C2 ¼
a1b1 cosh a1 þ a2b2 cosh a2

a1b2 sinh a1 � a2b2 sinh a2
C1; C3 ¼ �

b2

b1
C2; C4 ¼ �C1,

where C1 is an arbitrary complex number.
Consequently, for a given set of the beam parameters l, b, K and P, the eigenfrequencies o are determined

as the solutions of Eq. (6). The critical force Pcr is determined as the lowest value of P at which Eq. (6) has a
solution with negative imaginary part corresponding to a non-zero solution (u; y) to the eigenvalue problem
(3), (4), the rest of the beam parameters being kept fixed.

In general, given the parameters b, l and K, the critical force could be obtained computing the evolution of
the eigenfrequencies. To obtain the evolution of an eigenfrequency, one can start from the value of this
frequency at P ¼ 0 and increasing the force by a step DP to determine a sequence of solutions to the
frequency equation (6). We accomplished this algorithm using the routine FindRoot in Mathematica Version 5
(see Ref. [12], Sec. 1.5.7). Our observation is that a frequency of negative imaginary part appears after a
coalescence of two neighbour eigenfrequencies. Another observation is that the step DP should be sufficiently
small (in some computations DP�10�5) in order to obtain accurate results. This leads to lengthy computations
especially when one has to vary the foundation modulus K as well. Therefore, another computational
procedure is developed here, based on the following arguments. Given the parameters b, l and K, Eq. (6)
defines o as an implicit function of P so that Eq. (6) can be written in the form DðoðPÞ;PÞ ¼ 0. Differentiating
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with respect to P one obtains

d

dP
DðoðPÞ;PÞ ¼

qD

qP
þ

qD

qo
do
dP
¼ 0, (7)

which is a nonlinear ordinary differential equation for the function oðPÞ. Thus, the evolution of an
eigenfrequency can be obtained solving this equation with an initial condition

oðPÞjP¼0 ¼ o0,

where o0 is any of the eigenfrequencies of the cantilevered beam with P ¼ 0. We used the routine NDSolve in
Mathematica Version 5 (see Ref. [12], Sec. 1.6.4) to solve numerically Eq. (7). The results, presented in the next
section are obtained using both algorithms.
3. Results and discussion

In the case studies presented below, Timoshenko beams of rectangular cross section with shear coefficient
k ¼ 5=6 and Poisson’s ratio n ¼ 0:3 are considered. For convenience, a new slenderness parameter m ¼

ffiffiffiffiffiffiffiffi
12l
p

is
introduced and beams with values of m between 0:01 and 0:30 are regarded.

First, the case of a compressive force is studied. The results of our computations are presented in Table 1. It
is seen that for small values of the slenderness parameter m, the predictions of the two models coincide while
for high values of m Model II predicts lower critical compressive forces.

As mentioned above, Nemat-Nasser [3] and Lee et al. [8] studied the dynamic stability of cantilevered
Timoshenko beams but they gave only graphs of the critical forces. In order to compare our results to theirs,
the numeric values of the critical forces are recovered from the graphs in Refs. [3,8] for several values of the
slenderness parameter m. Lee et al. [9] also investigated the dynamic stability of cantilevered Timoshenko
beams using Model II and presented numeric data for the critical forces. The comparison of our results to the
results in these three papers is shown in Table 2. It is seen, that our results for the critical forces achieved
through Model II agree within 7% with the results of Nemat-Nasser [3] and are in excellent agreement with
the results of Lee et al. [9]. As far as the critical forces achieved through Model I are concerned, our results
agree within 3% with those, given in Ref. [8].

Next, the case of a tensile force is considered. It turned out that in this case both models also predict
dynamic instability of cantilevered beams for the whole range of the slenderness parameter m under
consideration unlike the Bernoulli–Euler beam theory.
Table 1

Dimensionless critical compressive forces Pcr � 104 for cantilevered Timoshenko beams without foundation—comparison of the two

models

m 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20 0.25 0.30

Pcr � 104 (Model I) 1.67 6.66 14.9 26.4 40.9 154 319 513 722 936

Pcr � 104 (Model II) 1.67 6.66 14.9 26.4 40.9 154 314 497 681 855

Table 2

Dimensionless critical compressive forces Pcr � 104 for cantilevered Timoshenko beams without foundation—comparison to results by

other authors

m 2
ffiffi
3
p

50
2
ffiffi
3
p

50
2
ffiffi
3
p

25
2
ffiffi
3
p

15
2
ffiffi
3
p

10

b 0.25 0.3269 0.3269 0.3269 0.3269

Present work 76.2 77.0 278.1 643.9 1010.3

Ref. [3] 71.0 – – – –

Ref. [8] – 76.0 272.0 622.0 –

Ref. [9] – 77.0 – – 1010.0
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For Model I, it is found that the critical tensile force Pcr is slightly greater than the value of the parameter b,
see Table 3. For each value of the slenderness parameter m, the instability occurs after coalescence of the
fourth and fifth eigenfrequencies.

As for Model II, the evolution of the eigenfrequencies of the beam of slenderness m ¼ 0:10 is presented in
Fig. 1. It is found that the first eigenfrequency decreases while the eigenfrequencies from second to tenth
increase with the increasing of the tensile force but, as seen in Fig. 1(a), they remain real for values of P up to
0:382. The eleventh and twelfth eigenfrequencies also increase, but they coincide at the critical force Pcr ¼

0:3817 as it is seen in Fig. 1(b). Beyond Pcr a complex eigenfrequency of real part 721 and a negative imaginary
part appears indicating the dynamic instability of the beam. Timoshenko beams with other values of m possess
stability features that are similar to the case m ¼ 0:10. The critical forces, real parts and serial numbers n and m

of the merging eigenfrequencies are presented in Table 4.
Finally, the dynamic stability of a Timoshenko beam of slenderness m ¼ 0:10 resting on a Winkler

foundation is studied for values of the dimensionless foundation modulus K up to 120. For both models, it is
found that there exist regions of parameters ðK ;PÞ where the beam is unstable. These regions are shown in
Fig. 2(a) and (b) for Models I and II, respectively. The lowest critical forces can be observed in the regions RI
and RII. They are found to be Pcr ¼ 0:0134 achieved at K ¼ 79 and Pcr ¼ 0:0133 achieved at K ¼ 78, for
Models I and II, respectively. These critical forces are smaller than the compressive critical force for the same
beam without foundation, which is 0:0154 for both models (see Table 1). It is noteworthy that the regions RI
and RII almost coincide.
Table 3

Dimensionless critical tensile forces Pcr � 104 and real parts ReðoÞ of the coalescing eigenfrequencies for cantilevered Timoshenko beams

of slenderness m without foundation according to Model I

m 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20 0.25 0.30

Pcr � 104 3205 3205 3205 3206 3206 3208 3212 3217 3224 3233

ReðoÞ 1580 790 527 395 316 158 105 79 63 53
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Fig. 1. Evolution of the dimensionless eigenfrequencies with the dimensionless force P of a Timoshenko beam with K ¼ 0 and m ¼ 0:10
according to Model II: (a) first ten eigenfrequencies; (b) eleventh (thin line) and twelfth (thick line) eigenfrequencies.

Table 4

Dimensionless critical tensile forces Pcr � 104, real parts ReðoÞ and serial numbers n;m of the coalescing eigenfrequencies for cantilevered

Timoshenko beams of slenderness m without foundation according to Model II

m 0:01 0:02 0:03 0:04 0:05 0:10 0:15 0:20 0:25 0:30

Pcr � 104 5706 5709 4102 3472 4096 3817 3541 4131 7711 6210

ReðoÞ 67946 16992 7558 4257 2759 721 312 208 213 168

n;m 77; 78 39; 40 29; 30 23; 24 19; 20 11; 12 7; 8 7; 8 9; 10 9; 10
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Fig. 3. Evolution of the real and imaginary parts of the dimensionless eigenfrequencies of a cantilevered Timoshenko beam with m ¼ 0:10
and K ¼ 120 responsible for the occurrence of instability according to Model I.
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This complicated picture of instability regions is due to the fact that multiple instability–restabilization–
instability transitions occur with the increasing of the force P. For instance, the evolution of the
eigenfrequencies responsible for the occurrence of the instability within the framework of Model I for
K ¼ 120, Po0:32 is shown in Fig. 3. The instability region RI depicted in Fig. 2(a) is related to the evolution
of eigenfrequencies o2 and o3. It is seen in Fig. 3(a) and (b) that these eigenfrequencies are real for values of
the tensile force up to Pcr ¼ 0:045 where they coalesce giving rise to a pair of complex conjugate
eigenfrequencies. At P ¼ 0:0725 these two complex eigenfrequencies coalesce again and evolve into a pair of
eigenfrequencies that are real for values of P up to 0:32. The instability regions above RI depicted in Fig. 2(a)
are related to the evolution of eigenfrequencies o5, o6, o7 and o8 shown in Fig. 3(c) and (d). Their evolution is
similar to the evolution of o2 and o3. Several coalescences are seen in Fig. 3(c) and (d) indicating that the
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beam undergoes a sequence of instability–restabilization–instability transitions. Observing Fig. 3(b) and (d)
one can easily identify the instability regions. They correspond to the intervals of P in which the imaginary
parts of the eigenfrequencies are non-zero.

Thus, it is found that the Timoshenko beam theory based on Eqs. (1) predicts dynamic instability of
cantilevers under tension unlike the Bernoulli–Euler theory. The Winkler foundation is found to destabilize a
Timoshenko beam of slenderness m ¼ 0:10 for values of K up to 120 in the sense that the critical forces for
0oKo120 are less than the critical force at K ¼ 0.

Finally, we would like to stress that although the two models considered are found to give different
predictions for the critical forces and corresponding eigenfrequencies especially for short beams and beams of
intermediate slenderness, this purely theoretical result is not sufficient to judge which of the two models
describes more adequately the dynamic stability of Timoshenko cantilevers. This matter could be clarified
through further experimental work.

Acknowledgement

This research is supported by Contract No. TH 1518/05 with NSF, Bulgaria.
References

[1] M. Beck, Die Knicklast des Einseitig Eingespannten Tangential Gedruc̈kten Stabes, Zeitschrift fur Angewandte Mathematik und

Physik 3 (1952) 225–228 (in German).

[2] V. Kolousek, Calcul des efforts dynamiques dans les ossatures rigides. Vibrations des poutres, des pourtiques at des arcs. Paris, Dunod,

1959, pp. 86–89.

[3] S. Nemat-Nasser, Instability of a cantilever under a follower force according to Timoshenko beam theory, Transactions of the

American Society of Mechanical Engineers, Journal of Applied Mechanics 34 (1967) 484–485.

[4] A.N. Kounadis, On the derivation of equations of motion for a vibrating Timoshenko column, Journal of Sound and Vibration 73

(1980) 177–184.

[5] K. Sato, On the governing equations for vibration and stability of a Timoshenko beam: Hamilton’s principle, Journal of Sound and

Vibration 145 (1991) 338–340.

[6] A.N. Kounadis, J.T. Katsikadelis, Shear and rotatory inertia effect on Beck’s column, Journal of Sound and Vibration 49 (1976)

171–178.

[7] J.T. Katsikadelis, A.N. Kounadis, Flutter loads of a Timoshenko beam-column under a follower force governed by two variants of

equations of motion, Acta Mechanica 48 (1983) 209–217.

[8] S.Y. Lee, Y.H. Kuo, F.Y. Lin, Stability of a Timoshenko beam resting on a Winkler elastic foundation, Journal of Sound and

Vibration 153 (1992) 193–202.

[9] S.Y. Lee, T.Y. Chen, W.R. Wang, Non-conservative instability of a Timoshenko beam subjected to a partially tangential follower

force, Journal of Sound and Vibration 188 (1995) 25–38.

[10] P. Malekzadeh, G. Karami, M. Farid, DQEM for free vibration analysis of Timoshenko beams on elastic foundations, Computational

Mechanics 31 (2003) 219–228.

[11] I. Elishakoff, Controversy associated with the so-called ‘‘Follower Forces’’: critical overview, Applied Mechanics Reviews 58 (2005)

117–142.

[12] S. Wolfram, The Mathematica Book, fifth ed., Wolfram Media, 2003.


	On the dynamic stability of a cantilever under tangential follower force according to Timoshenko beam theory
	Introduction
	Boundary-value problem
	Results and discussion
	Acknowledgement
	References


